Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Crowdsourced transportation by independent suppliers (or drivers) is central to urban delivery and mobility platforms. While utilizing crowdsourced resources has several advantages, it comes with the challenge that suppliers are not bound to assignments made by the platforms. In practice, suppliers often decline offered service requests, e.g., due to the required travel detour, the expected tip, or the area a request is located. This leads to inconveniences for the platform (ineffective assignments), the corresponding customer (delayed service), and also the suppliers themselves (non-fitting assignment, less revenue). Therefore, the objective of this work is to analyze the impact of a platform approximating and incorporating individual suppliers’ acceptance behavior into the order dispatching process and to quantify its impact on all stakeholders (platform, customers, suppliers). To this end, we propose a dynamic matching problem where suppliers’ acceptances or rejections of offers are uncertain. Suppliers who accept an offered request are assigned and reenter the system after service looking for another offer. Suppliers declining an offer stay idle to wait for another offer, but leave after a limited time if no acceptable offer is made. Every supplier decision reveals only their acceptance or rejection information to the platform, and in this paper, we present a corresponding mathematical model and an approximation method that translates supplier responses into updated approximations of the likelihood of a specific supplier to accept a specific future offer and use this information to optimize subsequent offering decisions. We show via a computational study based on crowdsourced food delivery that online approximation and incorporating individual supplier acceptance estimates into order dispatching leads to overall more successful assignments, more revenue for the platform and most of the suppliers, and less waiting for the customers to be served. We also show that considering individual supplier behavior can lead to unfair treatment of more agreeable suppliers.more » « less
-
Peer-to-peer transportation platforms dynamically match requests (e.g., a ride, a delivery) to independent suppliers who are not employed nor controlled by the platform. Thus, the platform cannot be certain that a supplier will accept an offered request. To mitigate this selection uncertainty, a platform can offer each supplier a menu of requests to choose from. Such menus need to be created carefully because there is a trade-off between selection probability and duplicate selections. In addition to a complex decision space, supplier selection decisions are vast and have systematic implications, impacting the platform’s revenue, other suppliers’ experiences (in the form of duplicate selections), and the request waiting times. Thus, we present a multiple scenario approach, repeatedly sampling potential supplier selections, solving the corresponding two-stage decision problems, and combining the multiple different solutions through a consensus algorithm. Extensive computational results using the Chicago Region as a case study illustrate that our method outperforms a set of benchmark policies. We quantify the value of anticipating supplier selection, offering menus to suppliers, offering requests to multiple suppliers at once, and holistically generating menus with the entire system in mind. Our method leads to more balanced assignments by sacrificing some “easy wins” toward better system performance over time and for all stakeholders involved, including increased revenue for the platform, and decreased match waiting times for suppliers and requests.more » « less
An official website of the United States government
